Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

نویسندگان

  • Markus D. Schofer
  • Philip P. Roessler
  • Jan Schaefer
  • Christina Theisen
  • Sonja Schlimme
  • Johannes T. Heverhagen
  • Maximilian Voelker
  • Roland Dersch
  • Seema Agarwal
  • Susanne Fuchs-Winkelmann
  • Jürgen R. J. Paletta
چکیده

INTRODUCTION Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). MATERIALS AND METHODS The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). RESULTS PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. CONCLUSION Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo

The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a ...

متن کامل

Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect.

There is an urgent need to develop biomimetic bone tissue engineering scaffolds for the repair of critical-sized calvarial defect. In this study, we developed a new nanoparticle-embedded electrospun nanofiber scaffold for the controlled dual delivery of BMP-2 and dexamethasone (DEX). The scaffold was achieved by (1) the encapsulation of BMP-2 into bovine serum albumin (BSA) nanoparticles to mai...

متن کامل

Ex Vivo Expansion of Umbilical Cord Blood Hematopoietic Stem Cells on Collagen- Fibronectin Coated Electrospun Nano Scaffold

Background and Objective: Umbilical Cord blood (UCB) hematopoietic stem cell (HSC) transplantation is a therapeutic approach for the treatment of malignant and non-malignant hematologic disorders due to ease of collection, lack of risk for donors and lower levels of infection. Moreover, it is considered a good alternative for bone marrow HSC transplantation. The main limitation of their use is ...

متن کامل

Osteogenic differentiation of mesenchymal stem cells cultured on PLLA scaffold coated with Wharton's Jelly

Poly-L-lactic acid (PLLA) electrospun nanofiber scaffold is one of the most commonly used synthetic polymer scaffolds for bone tissue engineering application. However, PLLA is hydrophobic in nature, hence does not maintain proper cell adhesion and tissue formation, moreover, it cannot provide the osteo-inductive environment due to inappropriate surface characteristic and the lack of surface mot...

متن کامل

Influence of Poly-(L-Lactic Acid) Nanofiber Functionalization on Maximum Load, Young's Modulus, and Strain of Nanofiber Scaffolds Before and After Cultivation of Osteoblasts: An In Vitro Study

The aim of this study was to characterize the influence of functionalization of synthetic poly-(L-lactic acid) (PLLA) nanofibers on mechanical properties such as maximum load, elongation, and Young's modulus. Furthermore, the impact of osteoblast growth on the various nanofiber scaffolds stability was determined. Nanofiber matrices composed of PLLA, PLLA-collagen, or BMP-2-incorporated PLLA wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011